

Jupyter[Lab] Language Server Protocol

This is the documentation for:

	jupyterlab-lsp [https://www.npmjs.com/package/@krassowski/jupyterlab-lsp]

	jupyter-lsp [https://pypi.org/project/jupyter-lsp/]

Both are managed on GitHub [https://github.com/krassowski/jupyterlab-lsp], where you can find the issue tracker [https://github.com/krassowski/jupyterlab-lsp/issues].

Getting Started

	Installation
	Please Read This First

	Fast Paths

	The Harder Way

	Next Step: Language Servers

	Language Servers
	Notebook-Optimized Language Servers

	NodeJS-based Language Servers

	Configuration
	Configuration Files

	Configuration Options

	Python entry_points

Advanced Usage

	Contributing

	Extending
	jupyterlab-lsp

	jupyter-lsp

	Releasing
	Updating Version Strings

Project Information

	CHANGELOG

	Roadmap
	Front End

	Backend

	Architecture
	As-Is

	Proposals

Installation

Please Read This First

Delivering LSP features to your JupyterLab requires three pieces:

jupyter-lsp

	runs in your notebook web application on your server to handle requests from the browser to language servers

	to run, you need:

	python >=3.5

	notebook >=4.3

jupyterlab-lsp

	runs in your browser, as an extension to JupyterLab

	to install it, you need:

	nodejs >8

	jupyterlab >=1.1,<2

Language Servers

	run on your server

	probably in another language runtime than python

	some can be automatically detected if installed

	others also need to be configured

Fast Paths

Here are two approches based on Jupyter documentation. If these do not meet your needs, try The Harder Way.

conda (minimal python)

conda create -c conda-forge -n lsp 'python >=3.7,<3.8' 'jupyterlab=1.2' 'nodejs>8' python-language-server
Also consider: r-languageserver [*]
source activate lsp
python -m pip install 'jupyter-lsp=0.8.0' --no-deps
jupyter labextension install '@krassowski/jupyterlab-lsp@0.8.0'

Then run

jupyter lab

Your browser should open to your local server.

docker (data science)

This approach is based roughly on the Jupyter docker-stacks documentation [https://github.com/jupyter/docker-stacks/tree/master/examples/docker-compose/notebook], which should be consulted for more about connecting volumes, passwords, and other advanced features:

Dockerfile

This already contains the python, r, julia, and nodejs runtimes as well as jupyterlab 1.25
FROM jupyter/datascience-notebook@sha256:73a577b006b496e1a1c02f5be432f4aab969c456881c4789e0df77c89a0a60c2

RUN conda install --quiet --yes --freeze-installed \
 'python-language-server' \
 'r-languageserver' \
 && python3 -m pip install --no-cache-dir --no-deps \
 'jupyter-lsp=0.8.0' \
 && jupyter labextension install --no-build \
 '@krassowski/jupyterlab-lsp@0.8.0' \
 && jupyter lab build --dev-build=False --minimize=True \
 && conda clean --all -f -y \
 && rm -rf \
 $CONDA_DIR/share/jupyter/lab/staging \
 /home/$NB_USER/.cache/yarn \
 && fix-permissions $CONDA_DIR \
 && fix-permissions /home/$NB_USER

docker-compose.yml

version: '2'

services:
 lsp-lab:
 build: .
 ports:
 - '18888:8888'

Build and Start

docker-compose up

You should now be able to access http://localhost:18888/lab, using the token provided in the log.

The Harder Way

Get A Working JupyterLab environment

Refer to the official JupyterLab Installation Documentation [https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html] for your installation approach.

	pip

	conda

	pipenv

	poetry

	*

	lab [https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html#pip]

	lab [https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html#conda]

	*

	*

	*

* PRs welcome!

Verify your lab works:

jupyter lab --version
jupyter lab

Get a Working NodeJS

The JupyterLab Development Environment Documentation [https://jupyterlab.readthedocs.io/en/stable/developer/extension_tutorial.html#set-up-a-development-environment] shows some approaches for getting NodeJS.

	conda

	*

	nodejs [https://jupyterlab.readthedocs.io/en/stable/developer/extension_tutorial.html#set-up-a-development-environment]

	*

Verify your node works and is findable from python.

jlpm versions

Install Jupyter[Lab] LSP

pip install jupyter-lsp=0.8.0
jupyter labextension install @krassowski/jupyterlab-lsp@0.8.0

Next Step: Language Servers

Now that you have jupyterlab-lsp, jupyter-lsp and all of their dependencies, you’ll need some language servers. See:

	Language Servers that will be found automatically once installed

	configuring jupyter-lsp for more control over which servers to load

Language Servers

jupyter-lsp does not come with any Language Servers! However, we will try to use them if they are installed and we know about them. For the language servers in the tables below, use one of the suggested package managers to install them: these implementations are tested to work with jupyter-lsp.

	You can disable this feature by configuring autodetect

If you do not see a language you would like, but can find it one of these lists:

	the official list [https://microsoft.github.io/language-server-protocol/implementors/servers] of language servers

	a community-curated list [https://langserver.org] of language servers

…you might be able to add it via configuration or build your own spec for the server in question.

Notebook-Optimized Language Servers

These servers have well-tested support for notebooks and file editors.

[5]:

 	Languages
 	Implementation
 	Installation

 	

 [bookmark: language-python]python

 	
 pyls

 	

 	pip: pip install python-language-server[all]

 	conda: conda install -c conda-forge python-language-server

 	

 [bookmark: language-r]r

 	
 r-languageserver

 	

 	cran: install.packages("languageserver")

 	conda: conda install -c conda-forge r-languageserver

NodeJS-based Language Servers

These servers have mostly been tested with file editors.

[6]:

 	Languages
 	Implementation
 	Installation

 	

 [bookmark: language-bash]bash

 [bookmark: language-sh]sh

 	
 bash-language-server

 	

 	npm: npm install --save-dev bash-language-server

 	yarn: yarn add --dev bash-language-server

 	jlpm: jlpm add --dev bash-language-server

 	

 [bookmark: language-dockerfile]dockerfile

 	
 dockerfile-language-server-nodejs

 	

 	npm: npm install --save-dev dockerfile-language-server-nodejs

 	yarn: yarn add --dev dockerfile-language-server-nodejs

 	jlpm: jlpm add --dev dockerfile-language-server-nodejs

 	

 [bookmark: language-javascript]javascript

 [bookmark: language-jsx]jsx

 [bookmark: language-typescript]typescript

 [bookmark: language-typescript-jsx]typescript-jsx

 [bookmark: language-typescriptreact]typescriptreact

 [bookmark: language-javascriptreact]javascriptreact

 	
 javascript-typescript-langserver

 	

 	npm: npm install --save-dev javascript-typescript-langserver

 	yarn: yarn add --dev javascript-typescript-langserver

 	jlpm: jlpm add --dev javascript-typescript-langserver

 	

 [bookmark: language-markdown]markdown

 [bookmark: language-ipythongfm]ipythongfm

 [bookmark: language-gfm]gfm

 	
 unified-language-server

 	

 	npm: npm install --save-dev unified-language-server

 	yarn: yarn add --dev unified-language-server

 	jlpm: jlpm add --dev unified-language-server

 	

 [bookmark: language-css]css

 [bookmark: language-less]less

 [bookmark: language-scss]scss

 	
 vscode-css-languageserver-bin

 	

 	npm: npm install --save-dev vscode-css-languageserver-bin

 	yarn: yarn add --dev vscode-css-languageserver-bin

 	jlpm: jlpm add --dev vscode-css-languageserver-bin

 	

 [bookmark: language-html]html

 	
 vscode-html-languageserver-bin

 	

 	npm: npm install --save-dev vscode-html-languageserver-bin

 	yarn: yarn add --dev vscode-html-languageserver-bin

 	jlpm: jlpm add --dev vscode-html-languageserver-bin

 	

 [bookmark: language-json]json

 	
 vscode-json-languageserver-bin

 	

 	npm: npm install --save-dev vscode-json-languageserver-bin

 	yarn: yarn add --dev vscode-json-languageserver-bin

 	jlpm: jlpm add --dev vscode-json-languageserver-bin

 	

 [bookmark: language-yaml]yaml

 	
 yaml-language-server

 	

 	npm: npm install --save-dev yaml-language-server

 	yarn: yarn add --dev yaml-language-server

 	jlpm: jlpm add --dev yaml-language-server

Example: Getting All the NodeJS-based Language Servers

A number of language servers are built on the reference implementation [https://github.com/microsoft/vscode-languageserver-node], powered by NodeJS. The most reliable place to install these is in a node_modules in the directory where you launch jupyter lab.

For example, to install all the servers which are tested as part of jupyterlab-lsp:

jlpm add --dev \
 bash-language-server \
 vscode-css-languageserver-bin \
 dockerfile-language-server-nodejs \
 vscode-html-languageserver-bin \
 javascript-typescript-langserver \
 vscode-json-languageserver-bin \
 yaml-language-server

This will create create (or add to):

	package.json (check this in!)

	yarn.lock (check this in!)

	node_modules/ (add to your VCS ignore file)

If you wish to install these someplace else, you may need to specify where you install them with extra_node_roots.

Configuring

Configuration Files

Like the Jupyter Notebook server, JupyterHub, and other Jupyter interactive computing tools, jupyter-lsp can be configured via Python or JSON files [https://jupyter-notebook.readthedocs.io/en/stable/config.html] in well-known locations. You can find out where to put them on your system with:

jupyter --paths

They will be merged from bottom to top, and the directory where you launch your notebook server wins, making it easy to check in to version control.

Configuration Options

language_servers

jupyter-lsp does not come with any Language Servers! However, we will try to use known language servers if they are installed and we know about them: you can disable this behavior by configuring autodetect.

If you don’t see an implementation for the language server you need, continue reading!

Please consider contributing your language server spec to jupyter-lsp!

The absolute minimum language server spec requires:

	argv, a list of shell tokens to launch the server in stdio mode (as opposed to tcp),

	the languages which the server will respond to, and

	the schema version of the spec (currently only 1)

./jupyter_notebook_config.json ---------- unique! -----------
| |
or e.g. V V
$PREFIX/etc/jupyter/jupyter_notebook_config.d/a-language-server-implementation.json
{
 "LanguageServerManager": {
 "language_servers": {
 "a-language-server-implementation": {
 "version": 1,
 "argv": ["/absolute/path/to/a-language-server", "--stdio"],
 "languages": ["a-language"]
 }
 }
 }
}

A number of other options we hope to use to enrich the user experience are available in the schema [https://github.com/krassowski/jupyterlab-lsp/blob/master/py_src/jupyter_lsp/schema/schema.json].

More complex configurations that can’t be hard-coded may benefit from the python approach:

jupyter_notebook_config.py
import shutil

c is a magic, lazy variable
c.LanguageServerManager.language_servers = {
 "a-language-server-implementation": {
 # if installed as a binary
 "argv": [shutil.which("a-language-server")],
 "languages": ["a-language"]
 },
 "another-language-implementation": {
 # if run like a script
 "argv": [shutil.which("another-language-interpreter"), "another-language-server"],
 "languages": ["another-language"]
 }
}

nodejs

default: None

An absolute path to your nodejs executable. If None, nodejs will be detected in a number of well-known places.

autodetect

default: True

If True, jupyter-lsp will look for all known language servers. User-configured language_servers of the same implementation will be preferred over autodetected ones.

node_roots

default: []

Absolute paths to search for directories named node_modules, such as nodejs-backed language servers. The order is, roughly:

	the folder where notebook or lab was launched

	the JupyterLab staging folder

	wherever conda puts global node modules

	wherever some other conventions put it

extra_node_roots

default: []

Additional places jupyter-lsp will look for node_modules. These will be checked before node_roots, and should not contain the trailing node_modules.

Python entry_points

pip-installable packages in the same environment as the Jupyter notebook server can be automatically detected as providing language_servers. These are a little more involved, but also more powerful: see more in Contributing. Servers configured this way are loaded before those defined in configuration files, so that a user can fine-tune their available servers.

Contributing

[1]:

jupyter-lsp and jupyterlab-lsp are open source [https://github.com/krassowski/jupyterlab-lsp/blob/master/LICENSE] software, and all contributions conforming to good sense, good taste, and the Jupyter Code of Conduct [https://github.com/jupyter/governance/blob/master/conduct/code_of_conduct.md] are welcome, and will be reviewed by the contributors, time-permitting.

You can contribute to the project through:

	creating language server specs

	you can publish them yourself (it might be a single file)…

	or advocate for adding your spec to the github repository [https://github.com/krassowski/jupyterlab-lsp.git] and its various distributions

	these are great first issues, as you might not need to know any python or javascript

	proposing parts of the architecture that can be extended

	improving documentation

	tackling Big Issues from the future roadmap

	improving testing

	reviewing pull requests

Set up the environment

Development requires:

	nodejs 8 or later

	python 3.5+

	jupyterlab 1.1

It is recommended to use a virtual environment (e.g. virtualenv or conda env) for development.

conda env update -n jupyterlab-lsp # create a conda env
source activate jupyterlab-lsp # activate it
or...
pip install -r requirements/dev.txt # in a virtualenv, probably
 # ... and install nodejs, somehow

The Easy Way

Once your environment is created and activated, on Linux/OSX you can run:

bash postBuild

This performs all of the basic setup steps, and is used for the binder demo.

The Hard Way

Install jupyter-lsp from source in your virtual environment:

python -m pip install -e .

Enable the server extension:

jupyter serverextension enable --sys-prefix --py jupyter_lsp

Install npm dependencies, build TypeScript packages, and link to JupyterLab for development:

jlpm
jlpm build
jlpm lab:link

Frontend Development

To rebuild the schemas, packages, and the JupyterLab app:

jlpm build
jupyter lab build

To watch the files and build continuously:

jlpm watch # leave this running...
jupyter lab --watch # ...in another terminal

Note: the backend schema is not included in ``watch``, and is only refreshed by ``build``

To check and fix code style:

jlpm lint

To run test the suite (after running jlpm build or watch):

jlpm test

To run tests matching specific phrase, forward -t argument over yarn and lerna to the test runners with two --:

jlpm test -- -- -t match_phrase

Server Development

Testing jupyter-lsp

python scripts/utest.py

Documentation

To build the documentation:

python scripts/docs.py

To watch documentation sources and build continuously:

python scripts/docs.py --watch

To check internal links in the docs after building:

python scripts/docs.py --check --local-only

To check internal and external links in the docs after building:

python scripts/docs.py --check

Note: you may get spurious failures due to rate limiting, especially in CI, but it's good to test locally

Browser-based Acceptance Tests

The browser tests will launch JupyterLab on a random port and exercise the Language Server features with Robot Framework [https://github.com/robotframework/robotframework] and SeleniumLibrary [https://github.com/robotframework/seleniumlibrary]. It is recommended to peruse the Robot Framework User’s Guide [https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html] (and the existing .robot files in atest) before working on tests in anger.

First, ensure you’ve prepared JupyterLab for jupyterlab-lsp frontend and server development.

Prepare the enviroment:

conda env update -n jupyterlab-lsp --file requirements/atest.yml
or
pip install -r requirements/atest.txt # ... and install geckodriver, somehow
apt-get install firefox-geckodriver # ... e.g. on debian/ubuntu

Run the tests:

python scripts/atest.py

The Robot Framework reports and screenshots will be in atest/output, with <operating system>_<python version>_<attempt>.<log|report>.html and subsequent screenshots being the most interesting artifact, e.g.

atest/
 output/
 linux_37_1.log.html
 linux_37_1.report.html
 linux_37_1/
 screenshots/

Customizing the Acceptance Test Run

By default, all of the tests will be run, once.

The underlying robot command supports a vast number of options and many support wildcards (* and ?) and boolean operators (NOT, OR). For more, start with simple patterns [https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#simple-patterns].

Run a suite

python scripts/atest.py --suite "05_Features.Completion"

Run a single test

python scripts/atest.py --test "Works With Kernel Running"

Run test with a tag

Tags are preferrable to file names and test name matching in many settings, as they are aggregated nicely between runs.

python scripts/atest.py --include feature:completion

… or only Python completion

python scripts/atest.py --include feature:completionANDlanguage:python

Just Keep Testing with ATEST_RETRIES

Run tests, and rerun only failed tests up to two times:

ATEST_RETRIES=2 python scripts/atest.py --include feature:completion

After running a bunch of tests, it may be helpful to combine them back together into a single log.html and report.html with rebot [https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#rebot]. Like atest.py, combine.py also passes through extra arguments

python scripts/combine.py

Troubleshooting

	If you see the following error message:

python Parent suite setup failed: TypeError: expected str, bytes or os.PathLike object, not NoneType

it may indicate that you have no firefox, or geckodriver installed (or discoverable in the search path).

	If a test suite for a specific language fails it may indicate that you have no appropriate server language installed (see LANGUAGESERVERS)

	If you are seeing errors like Element is blocked by .jp-Dialog, caused by the JupyterLab Build suggested dialog, (likely if you have been using jlpm watch) ensure you have a “clean” lab (with production assets) with:

bash jupyter lab clean jlpm build jlpm lab:link jupyter lab build --dev-build=False --minimize=True

and re-run the tests.

	To display logs on the screenshots, write logs with virtual_editor.console.log method, and change create_console('browser') to create_console('floating') in VirtualEditor constructor (please feel free to add a config option for this).

Formatting

Minimal code style is enforced with pytest-flake8 during unit testing. If installed, pytest-black and pytest-isort can help find potential problems, and lead to cleaner commits, but are not enforced during CI tests (but are checked during lint).

You can clean up your code, and check for using the project’s style guide with:

python scripts/lint.py

Specs

It is convenient to collect common patterns for connecting to installed language servers as pip-installable packages that Just Work with jupyter-lsp.

If an advanced user installs, locates, and configures, their own language server it will always win vs an auto-configured one.

Writing a spec

See the built-in specs [https://github.com/krassowski/jupyterlab-lsp/tree/master/py_src/jupyter_lsp/specs] for implementations and some helpers [https://github.com/krassowski/jupyterlab-lsp/blob/master/py_src/jupyter_lsp/specs/utils.py].

A spec is a python function that accepts a single argument, the LanguageServerManager, and returns a dictionary of the form:

{
 "python-language-server": { # the name of the implementation
 "version": 1, # the version of the spec schema
 "argv": ["python", "-m", "pyls"], # a list of command line arguments
 "languages": ["python"] # a list of languages it supports
 }
}

The absolute minimum listing requires argv (a list of shell tokens to launch the server) and languages (which languages to respond to), but many number of other options to enrich the user experience are available in the schema [https://github.com/krassowski/jupyterlab-lsp/blob/master/py_src/jupyter_lsp/schema/schema.json] and are exercised by the current entry_points-based specs [https://github.com/krassowski/jupyterlab-lsp/tree/master/py_src/jupyter_lsp/specs].

The spec should only be advertised if the command could actually be run:

	its runtime (e.g. julia, nodejs, python, r, ruby) is installed

	the language server itself is installed (e.g. python-language-server)

Common Concerns

	some language servers need to have their connection mode specified

	the stdio interface is the only one supported by jupyter_lsp

	PRs welcome to support other modes!

	because of its VSCode heritage, many language servers use nodejs

	LanguageServerManager.nodejs will provide the location of our best guess at where a user’s nodejs might be found

	some language servers are hard to start purely from the command line

	use a helper script to encapsulate some complexity.

	See the r spec [https://github.com/krassowski/jupyterlab-lsp/blob/master/py_src/jupyter_lsp/specs/r_languageserver.py] for an example

Example: making a pip-installable cool-language-server spec

Consider the following (absolutely minimal) directory structure:

- setup.py
- jupyter_lsp_my_cool_language_server.py

You should consider adding a LICENSE, some documentation, etc.

Define your spec:

jupyter_lsp_my_cool_language_server.py
from shutil import which

def cool(app):
 cool_language_server = shutil.which("cool-language-server")

 if not cool_language_server:
 return {}

 return {
 "cool-language-server": {
 "version": 1,
 "argv": [cool_language_server],
 "languages": ["cool"]
 }
 }

Tell pip how to package your spec:

setup.py
import setuptools
setuptools.setup(
 name="jupyter-lsp-my-cool-language-server",
 py_modules=["jupyter_lsp_my_cool_language_server"],
 entry_points={
 "jupyter_lsp_spec_v1": [
 "cool-language-server":
 "jupyter_lsp_my_cool_language_server:cool"
]
 }
)

Test it!

python -m pip install -e .

Build it!

python setup.py sdist bdist_wheel

Extend jupyterlab-lsp and jupyter-lsp

jupyterlab-lsp

At present, jupyterlab-lsp is still in very early development, and does not expose any runtime extension points. The roadmap lists several potential points of extension, but will require some refactoring to achieve.

jupyter-lsp

Language Server Specs

Language Server Specs can be configured by Jupyter users, or distributed by third parties as python or JSON files. Since we’d like to see as many Language Servers work out of the box as possible, consider contributing a spec, if it works well for you!

Message Listeners

Message listeners may choose to receive LSP messages immediately after being received from the client (e.g. jupyterlab-lsp) or a language server. All listeners of a message are scheduled concurrently, and the message is passed along once all listeners return (or fail). This allows listeners to, for example, modify files on disk before the language server reads them.

If a listener is going to perform an expensive activity that shouldn’t block delivery of a message, a non-blocking technique like IOLoop.add_callback [https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop.add_callback] and/or a queue [https://www.tornadoweb.org/en/stable/queues.html] should be used.

Add a Listener with entry_points

Listeners can be added via entry_points [https://packaging.python.org/specifications/entry-points/] by a package installed in the same environment as notebook:

setup.cfg

[options.entry_points]
jupyter_lsp_listener_all_v1 =
 some-unique-name = some.module:some_function
jupyter_lsp_listener_client_v1 =
 some-other-unique-name = some.module:some_other_function
jupyter_lsp_listener_server_v1 =
 yet-another-unique-name = some.module:yet_another_function

At present, the entry point names generally have no impact on functionality aside from logging in the event of an error on import.

Add a Listener with Jupyter Configuration

Listeners can be added via traitlets configuration, e.g.

jupyter_notebook_config.jsons
{
 'LanguageServerManager':
 {
 'all_listeners': ['some.module.some_function'],
 'client_listeners': ['some.module.some_other_function'],
 'server_listeners': ['some.module.yet_another_function'],
 },
}

Add a listener with the Python API

lsp_message_listener can be used as a decorator, accessed as part of a serverextension.

This listener receives all messages from the client and server, and prints them out.

from jupyter_lsp import lsp_message_listener

def load_jupyter_server_extension(nbapp):

 @lsp_message_listener("all")
 async def my_listener(scope, message, language_server, manager):
 print("received a {} {} message from {}".format(
 scope, message["method"], language_server
))

scope is one of client, server or all, and is required.

Listener options

Fine-grained controls are available as part of the Python API. Pass these as named arguments to lsp_message_listener.

	language_server: a regular expression of language servers

	method: a regular expression of LSP JSON-RPC method names

Releasing

jupyterlab-lsp and jupyter-lsp releases may require building both the python package and nodejs packages.

Updating Version Strings

Check the version strings across the various files:

python scripts/integrity.py

	TODO: create a release.py script #88 [https://github.com/krassowski/jupyterlab-lsp/issues/88]

The PyPI version must be updated in the following places:

	py_src/jupyter_lsp/_version.py (canonical)

	azure-pipelines.yml

	CHANGELOG.md

The npm version must be updated in the following places

	packages/jupyterlab-lsp/package.json (canonical)

	azure-pipelines.yml

	packages/metapackage/package.json

	CHANGELOG.md

CHANGELOG

[1]:

@krassowski/jupyterlab-lsp 0.8.0 (2020-03-12)

	features

	opens a maximum of one WebSocket per language server (#165 [https://github.com/krassowski/jupyterlab-lsp/pull/165], #199 [https://github.com/krassowski/jupyterlab-lsp/pull/199])

	lazy-loads language server protocol machinery (#165 [https://github.com/krassowski/jupyterlab-lsp/pull/165])

	waits much longer for slow-starting language servers (#165 [https://github.com/krassowski/jupyterlab-lsp/pull/165])

	cleans up documents, handlers, events, and signals more aggressively (#165 [https://github.com/krassowski/jupyterlab-lsp/pull/165])

	ignores malformed diagnostic ranges, enabling markdown support (#165 [https://github.com/krassowski/jupyterlab-lsp/pull/165])

	passes tests on Python 3.8 on Windows (#165 [https://github.com/krassowski/jupyterlab-lsp/pull/165])

	improves support for rpy2 magic cells with parameters (#206 [https://github.com/krassowski/jupyterlab-lsp/pull/206])

	bug fixes

	reports files are open only after installing all handlers to avoid missing messages (#201 [https://github.com/krassowski/jupyterlab-lsp/issues/201])

lsp-ws-connection 0.4.0 (2020-03-12)

	breaking changes

	no longer assumes one document per connection (#165 [https://github.com/krassowski/jupyterlab-lsp/pull/165])

	requires documents be opened explicitly (#165 [https://github.com/krassowski/jupyterlab-lsp/pull/165])

	use of the eventEmitter pattern mostly deprecated in favor of Promises (#165 [https://github.com/krassowski/jupyterlab-lsp/pull/165])

jupyter-lsp 0.8.0 (2020-03-12)

	breaking changes

	websockets are now serviced by implementation key, rather than language under lsp/ws/<server key> (#199 [https://github.com/krassowski/jupyterlab-lsp/pull/199])

	introduces schema version 2, reporting status by server at lsp/status (#199 [https://github.com/krassowski/jupyterlab-lsp/pull/199])

	bugfixes:

	handles language server reading/writing and shadow file operations in threads (#199 [https://github.com/krassowski/jupyterlab-lsp/pull/199])

jupyter-lsp 0.7.0

	bugfixes

	didSave no longer causes unwanted messages in logs (#187 [https://github.com/krassowski/jupyterlab-lsp/pull/187])

@krassowski/jupyterlab-lsp 0.7.1

	features

	users can now choose which columns to display in the diagnostic panel, using a context menu action (#159 [https://github.com/krassowski/jupyterlab-lsp/pull/159])

	start the diagnostics panel docked at the bottom and improve the re-spawning of the diagnostics panel (#166 [https://github.com/krassowski/jupyterlab-lsp/pull/166])

	bugfixes

	fixed various small bugs in the completer (#162 [https://github.com/krassowski/jupyterlab-lsp/pull/162])

	fix documentation display in signature for LSP servers which return MarkupContent (#164 [https://github.com/krassowski/jupyterlab-lsp/pull/164])

lsp-ws-connection 0.3.1

	added sendSaved() method (textDocument/didSave) (#147 [https://github.com/krassowski/jupyterlab-lsp/pull/147])

	fixed getSignatureHelp() off-by-one error (#140 [https://github.com/krassowski/jupyterlab-lsp/pull/140])

@krassowski/jupyterlab-lsp 0.7.0

	features

	reduced space taken up by the statusbar indicator (#106 [https://github.com/krassowski/jupyterlab-lsp/pull/106])

	implemented statusbar popover with connections statuses (#106 [https://github.com/krassowski/jupyterlab-lsp/pull/106])

	generates types for server data responses from JSON schema (#110 [https://github.com/krassowski/jupyterlab-lsp/pull/110])

	added ‘rename’ function for notebooks, using shadow filesystem (#115 [https://github.com/krassowski/jupyterlab-lsp/pull/115])

	added a UX workaround for rope rename issues when there is a SyntaxError in the Python code (#127 [https://github.com/krassowski/jupyterlab-lsp/pull/127])

	added a widget panel with diagnostics (inspections), allowing to sort and explore diagnostics, and to go to the respective location in code (with a click); accessible from the context menu (#129 [https://github.com/krassowski/jupyterlab-lsp/pull/129])

	all commands are now accessible from the command palette (#142 [https://github.com/krassowski/jupyterlab-lsp/pull/142])

	bash LSP now also covers %%bash magic cell in addition to %%sh (#144 [https://github.com/krassowski/jupyterlab-lsp/pull/144])

	rpy2 magics received enhanced support for argument parsing in both parent Python document (re-written overrides) and exctracted R documents (improved foreign code extractor) (#148 [https://github.com/krassowski/jupyterlab-lsp/pull/148], #153 [https://github.com/krassowski/jupyterlab-lsp/pull/153])

	console logs can now easily be redirected to a floating console windows for debugging of the browser tests (see CONTRIBUTING.md)

	bugfixes

	diagnostics in foreign documents are now correctly updated (133fd3d [https://github.com/krassowski/jupyterlab-lsp/pull/129/commits/133fd3d71401c7e5affc0a8637ee157de65bef62])

	diagnostics are now always correctly displayed in the document they were intended for

	the workaround for relative root path is now also applied on Mac (#139 [https://github.com/krassowski/jupyterlab-lsp/pull/139])

	fixed LSP of R in Python (%%R magic cell from rpy2) (#144 [https://github.com/krassowski/jupyterlab-lsp/pull/144])

	completion now work properly when the kernel is shut down (#146 [https://github.com/krassowski/jupyterlab-lsp/pull/146])

	a lowercase completion option selected from an uppercase token will now correctly substitute the incomplete token (#143 [https://github.com/krassowski/jupyterlab-lsp/pull/143])

	didSave() is emitted on file save, enabling the workaround used by R language server to lazily load library(tidyverse) (#95 [https://github.com/krassowski/jupyterlab-lsp/pull/95], #147 [https://github.com/krassowski/jupyterlab-lsp/pull/147],)

	signature feature is now correctly working in notebooks (#140 [https://github.com/krassowski/jupyterlab-lsp/pull/140])

lsp-ws-connection 0.3.0

	infrastructure

	brought into monorepo #107 [https://github.com/krassowski/jupyterlab-lsp/pull/107]

	dev

	allows initializeParams to be overloaded by subclasses

	adopts

	typescript 3.7

	prettier

	tslint

	added initialization checks before executing sendChange to comply with LSP specs #115 [https://github.com/krassowski/jupyterlab-lsp/pull/115]

jupyter-lsp 0.7.0b0

	features

	adds a language server status endpoint (#81 [https://github.com/krassowski/jupyterlab-lsp/pull/81])

	adds more descriptive information to the language server spec (#90 [https://github.com/krassowski/jupyterlab-lsp/pulls/100])

	adds an extensible listener API (#99 [https://github.com/krassowski/jupyterlab-lsp/issues/99], #100 [https://github.com/krassowski/jupyterlab-lsp/pulls/100])

@krassowski/jupyterlab-lsp 0.6.1

	features

	adds an indicator to the statusbar

	and many other improvements, see the release notes [https://github.com/krassowski/jupyterlab-lsp/releases/tag/v0.6.1]

	dependencies

	removes unused npm dependencies

@krassowski/jupyterlab-lsp 0.6.0

	features

	allows “rename” action in file editor

	bugfixes

	handles some non-standard diagnostic responses

	testing

	adds browser-based testing for file editor

	dependencies

	requires jupyter-lsp

jupyter-lsp 0.6.0b0

	features

	starts language servers on demand

	accepts configuration via Jupyter config system (traitlets) and python entry_points

	autodetects language servers for bash, CSS, LESS, SASS, Dockerfile, YAML, JS, TypeScript, JSX, TSX, JSON, YAML

Roadmap

If a feature you would like is not on the lists above, please feel free to suggest it by opening a new issue [https://github.com/krassowski/jupyterlab-lsp/issues].

Front End

	improved code navigation when there are multiple jump targets

	autocompleter with documentation and sorting based on LSP suggestions

	system of settings, including options:

	to enable aggressive autocompletion (like in hinterland)

	to change the verbosity of signature hints (whether to show documentation, number of lines to be shown)

	custom foreign extractors allowing to customize behaviour for magics

	code actions (allowing to “quick fix” a typo, etc.)

	gutter with linter results

	use the kernel session for autocompletion in FileEditor if available (PR welcome)

Backend

	release on conda

	#49 [https://github.com/krassowski/jupyterlab-lsp/issues/49] cookiecutter for pip-installable specs

	add hook system to allow serverextensions/kernels to modify, inspect and react to LSP messages

Architecture

As-Is

These are how we think everything works in the current master branch.

Front End

[2]:

[image: _images/Architecture_4_0.svg]

Back End

[3]:

[image: _images/Architecture_6_0.svg]

Proposals

Some fragments of how the architecture could change in the future, and why (or why not) they might be a good idea.

Reorganize client source with lerna and typescript projects #76 [https://github.com/krassowski/jupyterlab-lsp/issues/76]

TBD

Add DiagnosticsManager, refactor DiagnosticPanel #176 [https://github.com/krassowski/jupyterlab-lsp/issues/176]

TBD

Multiple sources of LSP messages on frontend and backend #184 [https://github.com/krassowski/jupyterlab-lsp/issues/184]

TBD

Use mime types from server spec for language detection #190 [https://github.com/krassowski/jupyterlab-lsp/issues/190]

TBD

Formalize and extend language transclusion #191 [https://github.com/krassowski/jupyterlab-lsp/issues/191]

TBD

Index

 nav.xhtml

 Table of Contents

 		
 Jupyter[Lab] Language Server Protocol

 		
 Installation

 		
 Please Read This First

 		
 jupyter-lsp

 		
 jupyterlab-lsp

 		
 Language Servers

 		
 Fast Paths

 		
 conda (minimal python)

 		
 docker (data science)

 		
 The Harder Way

 		
 Get A Working JupyterLab environment

 		
 Get a Working NodeJS

 		
 Install Jupyter[Lab] LSP

 		
 Next Step: Language Servers

 		
 Language Servers

 		
 Notebook-Optimized Language Servers

 		
 NodeJS-based Language Servers

 		
 Example: Getting All the NodeJS-based Language Servers

 		
 Configuration

 		
 Configuration Files

 		
 Configuration Options

 		
 language_servers

 		
 nodejs

 		
 autodetect

 		
 node_roots

 		
 extra_node_roots

 		
 Python entry_points

 		
 Contributing

 		
 Extending

 		
 jupyterlab-lsp

 		
 jupyter-lsp

 		
 Language Server Specs

 		
 Message Listeners

 		
 Releasing

 		
 Updating Version Strings

 		
 CHANGELOG

 		
 Roadmap

 		
 Front End

 		
 Backend

 		
 Architecture

 		
 As-Is

 		
 Front End

 		
 Back End

 		
 Proposals

 		
 Reorganize client source with lerna and typescript projects #76

 		
 Add DiagnosticsManager, refactor DiagnosticPanel #176

 		
 Multiple sources of LSP messages on frontend and backend #184

 		
 Use mime types from server spec for language detection #190

 		
 Formalize and extend language transclusion #191

_static/file.png

_static/minus.png

_static/plus.png

